ALLOWANCE FOR THE INERTIA EFFECT IN THE
PROBLEM OF THE DEFORMATION OF A VISCOELASTIC
CYLINDER SUBJECTED TO CYCLIC LOADING

A. E. Segalov UDC 532.135:534.1

The influence of the inertia effect on heating and creep acceleration in cylically loaded
polymers is estimated; it is shown that for polymers whose compliance increases sharply
on a certain temperature interval the temperature and resonance curves are multivalued,

The high viscosity and low thermal conductivity of rigid polymers leads to considerable heating when
vibrational loads are applied. This considerably reduces their stiffness and facilitates deformation [1,2].
Barenblatt [3] has investigated the effect of small secondary vibrational loads on the deformation of a poly-
mer subjected to a slowly varying primary load on the frequency range on which the inertia effect may be
neglected. As will be shown below, taking the inertia effect into account may lead to qualitatively new re-

sults.

On the assumption that the primary load is created by a heavy weight and the mass of the cylindrical
polymer specimen is much less than the mass of the weight, it is possible to treat the massless cylinder
and weight as a system with one degree of freedom {4,5]. In this case the specimen is replaced by the equiv-
alent (with respect to elastic and dissipative properties) spring.

A similar model was recently employed in [5], the change in the viscoelastic properties of the polymer
specimen during deformation being taken into account simply by artificially introducing the dependence of
the modulus of elasticity on strain amplitude.

Schapery [6] allowed for heating and its effect on the elastic and dissipative properties of the poly~-
mer in studying the steady-state vibrations of a massless slab with an attached concentrated mass. His
computer caleulations, in which he employed a specific form of the functions E'(T) and E"(T), showed that
the temperature and strain amplitude may have a multivalued dependence on vibration frequency. Schapery's
subsequent experiments [7] confirmed this result.

We have now shown with reference tothecyclicdeformation of a
polymer cylinder with an attached massive weight that if on a certain

£E , temperature interval the compliance of the polymer increases as a re-
£ sult of dissipative heating, the temperature and resonance curves will be
©0"° = multivalued.
/ 1. A vibrational load ¢S coswtis applied to a polymer cylinder with
0¥ - ' \ an attached massive weight. We consider the range of frequencies con-
£ / \ taining the first natural frequency of the weight—cylinder system. Be-
. r———-L—'/ cause of the condition M>>p[S these frequencies are much less than the

20 50 60 nooT. first natural frequency of the cylinder; accordingly, the deformation &

Fig. 1. Dynamic modulus associated with the vibrational load is constant along the cylinder.

E! (dyne/cmz) and loss mod- The vibration equation can be written in the form
ulus E" (dyne/cm?) as func- & E' de
tions of temperature T (°C). m 7 e x -+ E's = 0, cos t, 1)
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Fig. 2, Heat release f(T,) and heat loss B(T—-T,) functions versus temperature T (°C),

Fig. 3. Resonance curve.

where m =1M/S. In Fig. 1 [8] we have plotted the E'(T) and E"(T) dependences for polystyrene (we neglect
the weak frequency dependence). This approximation is meaningful only for temperaturesbelow the glass
transition or softening points; accordingly, E'(T) >E"(T).

Averaging the cylinder temperature T over a time interval large as compared with the vibration period,
we obtain the energy balance equation
a7 _ 0B

- 2 1), @)
dt 2A r

Let the characteristic time of temperature variation, given by Eq. 2), be much greater than the time
required to build up the forced vibrations. Then for the steady-state strain we obtain
6 — O, os (of — §)
(E' —ma®) + E")2

= & (T, ©) cos (@t — §). @)

Let the vibration frequency be less than the initial natural frequency of the weight—cylinder system
wi< E'(To)/m). As a result of the gradual heating of the cylinder and its loss of stiffness the natural fre-
quency of the system falls. At the "resonance" femperature T* (w), at which E'(T*) =mw?, we get "para~
metric" resonance.

2. For determining the steady-state temperature 6(w) we have
B(O—Ty)=[(6, o),
where the parameter B =4a A/r characterizes the heat transfer;
oE’"g*
(E' —me?p + E”

f(T, ©) = oE" (T) &3 =

A typical plot of the function f for two frequency values wy >w; is shown in Fig. 2. At a fixed vibration fre-
quency either one or three (6;<6,<6;) steady thermal states (in the degenerate case two) are possible.
The steady state with temperature 6, is unstable, since in response to a slight fall in temperature heat
transfer begins to predominate leading to cooling of the cylinder to the temperature 6; whereas a rise in
temperature leads to the predominance of heat release and heating to 6;. Thus, temporary overheating

of the cyclically loaded element above the temperature 6, leads to a sharp rise in the steady-state operating
temperature.

The multivaluedness of 6(w) leads to multivaluedness of the resonance curve gy(w) (Fig. 3), but the
section corresponding to the unstable 6, (w) hranch of the -temperature curve cannot be realized. As the
frequency increases, the resonance curve e;" "(w) is followed, and as it decreases the other resonance curve
€p (w). Transition from one branch to the other may likewise result from a brief overheating or cooling of
the cylinder.

Thus, in a cylinder subjected tocyclic loading at constant frequency the steady state depends on the
initial temperature. Correspondingly, either a greater £; (w) or a lesser sb* (w) strain amplitude may be
established. If, however, the process results in the establishment of a steady-state temperature 6(w)> T*
(w), then the maximum strain amplitude will be reached during heating (@t the "resonance" temperature
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T*(w)), with a subsequent decline to gy(w). Thus, in connection with the design of cyclically loaded poly-
meric parts a certain intermediate state, reached during the transient process, may prove to be more
dangerous than the final state corresponding to the maximum temperature.

3. Let us now consider the creep of a polymer specimen subjected to a considerable static stress ¢°

and a small secondary vibrational load "> og). The strain rate [9]

de? U — yo°
o= Fee (2" @

In this case the role of the vibrational load reduces merely to raising the temperature of the specimen and
the creep rate depends essentially on which of the above steady-state thermal regimes — low temperature
of high~-temperature ~ is established.

In particular, the intense heat release and acceleration of creep observed in the later stages of the
vibrocreep experiment described in [9] were evidently partially caused by the inertia effect. The original,
purely viscous heating of the polymer reduced its modulus of elasticity and brought.the system closer to
parametric resonance, which then further accelerated the heating.

Thus, the inertia effect in cyclically loaded polymeric materials may lead to an additional increase in
deformation.

NOTATION
T is the cylinder temperature;
E'(T) is the dynamic modulus;
E"(T) is the loss modulus;
S,l,and r are the cross-sectional area, length, and radius of the cylinder;
pandc are the density and specific heat;
w is the frequency;
t is the time;
M is the mass of the weight;
gy and g are the stress and strain amplitudes;
A is the mechanical equivalent of heat;
o and T, are the heat transfer coefficient and ambient temperature;
B is the heat transfer parameter;
T*(w) is the "resonance" temperature;
0 is the steady-~state cylinder temperature;

ol is the static stress;
&) is the creep strain;
U is the activation energy;
R is the universal gas constant;
8% is ‘a material constant.
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